
Status of HLT Integration
LS1 evolution - PSC and athenaHLT

Ricardo Abreu
Werner Wiedenmann

Frank Winklmeier

CERN

July 19, 2013

Ricardo Abreu (CERN) Status of HLT Integration July 19, 2013 1 / 14

Introduction/Recap

▷ LS1 evolution of PSC and athenaHLT caused by evolution of TDAQ
� foundation is the merge of L2 and EF

▷ The origin of the changes is on the HLT Interface
� the main point of integration with the HLT

HLT Interface
▷ Package that provides the API that the

PUs and the HLT use to communicate
▷ Composed of mainly two parts:
� FSM API → used by PU;

implemented by HLT
� DC API → used by HLT;

implemented by PU

▷ Changes on the interface affect both
sides

Ricardo Abreu (CERN) Status of HLT Integration July 19, 2013 2 / 14

Introduction/Recap continued

Evolution of the PSC and athenaHLT can be seen as
deriving from changes in the HLT Interface

PSC framework
▷ The part that concretizes the HLT

Interface on the HLT side
� it wraps the rest of the HLT so that it

can be executed online

athenaHLT (old athenaMT/PT)
▷ An alternative concretization of the

online dataflow (PU+...)
� allows the offline execution of the

HLT without having to run a partition
� useful for dev, auto testing, and

reprocessing

Ricardo Abreu (CERN) Status of HLT Integration July 19, 2013 3 / 14

LS1 changes on HLT Interface

Changes to the HLT Interface

1 One single interface (following L2 style for process) → Merge
2 Transitions receive parameters in boost::property trees → Ptrees
3 New transitions for multi-process handling → Forking
4 New data collection scheme, with ROB reserving and monitoring → DC

Ricardo Abreu (CERN) Status of HLT Integration July 19, 2013 4 / 14

Impact Item 1 – Merge

Summary
1 One single interface (following L2 style for process) → Merge

In general, it involves:
▷ preservation/adaptation of logic from one of the levels
▷ accumulation of logic from both levels
▷ renaming of things (from L2/EF to HLT)
� the notions of L2/EF were fundamental and infused many code fragments
� type names, includes, error ids, messages, comments, control flow constructs (like

if-else)
� Done, except where ”external” software is involved

not evolved yet (e.g. eformat)
not integrated yet (e.g. trigger flags)

▷ used opportunity to improve and reorganize the code

Work simultaneous with ptrees
▷ Items 3 and 4 clearly separated → can be done separately from the rest;
▷ Work for items 1 and 2 (ptrees) is naturally coupled → both change same element of

HLT Interface

Ricardo Abreu (CERN) Status of HLT Integration July 19, 2013 5 / 14

Impact Item 2 – Ptrees

Summary
2 Transitions receive parameters in boost::property trees → Ptrees

▷ Allows arbitrary communication from DF to HLT
U no need to change HLT Interface when information exchange changes

▷ The HLT Interface abstains from specifying the communication contents
▷ Of course, both sides still need to agree
D Detection of problems passed to run-time when the compiler could have been done it
→ accepted downside

In practice...
▷ Approach replaces 2 ways of receiving information in the HLT: direct parameters and

global info (e.g. OKS, RunParams)
▷ The only transitions where any information is being inserted in the ptrees are

configure and prepareForRun
� In the future, also prepareWorker and possibly finishWorker and hltUserCommand
� Biggest chunk of the work on configure

▷ Work on this point consisted mainly on:
� establishing contents/structure of the ptrees and aligning with other developers
� fill them in according to the user’s intentions
� read and use them, replacing previous approaches

Ricardo Abreu (CERN) Status of HLT Integration July 19, 2013 6 / 14

Impact Item 3 – Forking

Summary
3 New transitions for multi-process handling → Forking

▷ In order to profit from the CoW feature, the HLTPU forks into several processes
� during PU’s prepareForRun
� after HLT’s prepareForRun

▷ the new transitions are: prepareWorker and finishWorker

HLTPU : : prepareForRun ()
{

. . .
// t h e HLT does i t s prepareForRun h e r e
H L T I n t e r f a c e . prepareForRun (. . .)

// t h e HLT f i n i s h e d p r e p a r i n g . Now we f o r k
f o r k r e s u l t = f o r k () ;

i f (f o r k r e s u l t == IN CHILD PROCESS)
{

// h e r e we know we a r e i n one o f t h e f o r k e d u n i t s
// we need to s e t u p i n d i v i d u a l s t u f f
H L T I n t e r f a c e . p repareWorker (. . .)

}
e l s e // IN MOTHER PROCESS

setupWhatever I sNeededForMother () ;
}

Ricardo Abreu (CERN) Status of HLT Integration July 19, 2013 7 / 14

Impact Item 3 – Forking (continued)

But why are new transitions needed?

▷ Some of the parameters that are set in the configuration are meant to be unique to
each process (e.g. PID)

▷ after the forking, each process has copies of these parameters → a new transition is
needed to individualize them (prepareWorker)

Potential pitfall
▷ By the time the prepareWorker transition is reached, copies of the original info may already

have been created by the software down the stack.
▷ To detect these copies:

1 make info unavailable before prepareWorker
2 see where problems appear (i.e. places where the info is expected)
3 solve by moving code to prepareWorker or by overwriting existing copies

▷ In practice, not many cases expected

▷ When coming back from running, forked processes need a chance to cleanup
� finishWorker called during HLTPu’s stopRun but after HLT’s stopRun

Ricardo Abreu (CERN) Status of HLT Integration July 19, 2013 8 / 14

Impact Item 4 – Data Collection

Summary
4 New data collection scheme, with ROB reserving and monitoring → DC

▷ In the old days...
� L2 received a L1R and requested necessary ROBs

requests packed and cached by the ROBDataProviderSvc

� EF received already the full event
▷ In the new scheme...
� The HLT follows the L2 approach for the DC, but

caching and packing managed entirely by the Data Collection Manager (DCM)
ROBDataProviderSvc only forwards requests to reserve and collect data to the DCM

� DC component of the HLT Interface changed to:
include a reserve method
piggyback cost-monitoring relevant data on the collect method (e.g. was the ROB cached)

� ROBDataProviderSvc interface to HLT algorithms stays the same

athenaHLT has to implement the Data Collection
▷ reproducing the behavior of the DCM
▷ some aspects remain to be defined (e.g. from what threshold of cached ROBs will

the DCM get the full event)

Ricardo Abreu (CERN) Status of HLT Integration July 19, 2013 9 / 14

Global progress

Changes to the HLT Interface
1 One single interface (following L2 style for process) → Merge ∎ ∎ ∎ ∎
� only sparse changes left, to integrate external code

2 Transitions receive parameters in boost::property trees → Ptrees ∎ ∎ ∎ ◻
� RunParams still read from IS

some discussion still ongoing regarding future set of run params
� HLTImplementationDB config from athenaHLT also pending (--use-database)

some reflection still needed (see twiki for details)

3 New transitions for multi-process handling → Forking ∎ ◻ ◻ ◻
� To do...

4 New data collection scheme, with ROB reserving and monitoring → DC ∎ ∎ ◻ ◻
� Werner’s work needs to be integrated

His simulation of DCM’s job has to be passed to athenaHLT

5 Much necessary code restructuring/rewrite ∎ ∎ ∎ ∎

Ricardo Abreu (CERN) Status of HLT Integration July 19, 2013 10 / 14

https://twiki.cern.ch/twiki/bin/viewauth/Atlas/UpdatesOnEvolutionOfPSCAndAthenaHLT#ImpactDB

Focusing on athenaHLT

Examples of things that have been done...

Python bindings for the new HLT Interface
▷ including ptree bindings that try to incorporate python spirit
� myptree[’path.to.my.stuff’] = ’foobar’
� same approach followed for iterators, key/value concepts, membership tests, etc.

New configuration strategy
▷ further encapsulate option specification and separate it from parsing
▷ implement a configuration class, following the RAII principle, which encapsulates

the configuration
� responsible for parsing and digesting the cli args
� works with different option specifications (i.e. file based, emon when supported)
� provides a standard way to access configuration for the rest of the program
� generates ptrees on the fly
� c = configuration(file opt spec, cli args)

print "joboptions:", c[’joboptions’]
print "precommands:", c[’precommand’]
print "config ptree:", c.get config ptree()

Ricardo Abreu (CERN) Status of HLT Integration July 19, 2013 11 / 14

athenaHLT – more examples of changes

Integrate processor with new configuration scheme
▷ Processor now receives configuration object in the constructor
� (plus online infrastructure for future runs with online monitoring)

▷ old way of accessing attributes maintained but redirected
� processor.libraries internally translated to processor.config[’libraries’]
� processor.run number internally translated to processor.config[’run-number’]
� old code accessing the attributes could be maintained

Automatic testing and development scaffolding
▷ many unit tests
▷ some integration (application-level) tests (more to be added in time)
▷ In both cases
� brought old tests up to speed / replaced outdated ones
� added new ones
� improved testing framework
� made test failure detectable with exit code

▷ Include notions of unsupported and untested options
� Using an option with a value that wasn’t explicitly marked as supported results in an

error
� Using an option with a value that was marked as untested results in a warning

Ricardo Abreu (CERN) Status of HLT Integration July 19, 2013 12 / 14

athenaHLT - examples of current features

▷ Many features that were supported in athenaMT/PT are already supported in
athenaHLT
� Most still marked as untested

Examples

� input event modifiers

� saving output events with different compression levels

� interactive more with python prompt

� static and dynamic run-number overwriting

� timeout watchdog

� Changing the PSC’s setup python file

� Pre and post commands

� etc.

Ricardo Abreu (CERN) Status of HLT Integration July 19, 2013 13 / 14

Practicalities

▷ athenaHLT is already available in the SVN (along with the PSC)
� Tags TrigKernel-20-00-00, TrigServices-20-00-00, TrigPSC-20-00-00, and

HLTTestApps-20-00-00
▷ However, it requires the new HLT Interface
� which requires C++11

▷ Have currently been working with a custom HLT Interface
▷ Should go into a nightly soon - dev/devval or MIG8?
� compile against tdaq-05-00-01 / C++11 offline nightly?

▷ Move of hltinterface package to latest tdaq-common (01-23-00)
� Will be used in dev/devval in the next few days, leading towards release 18
� PSC packages will have no more dependency on tdaq and can be moved to

AtlasTrigger later on

Ricardo Abreu (CERN) Status of HLT Integration July 19, 2013 14 / 14

