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Abstract

Believable virtual humans need to combine a realistic ap-
pearance with a virtual brain that is able to approximate
human cognition and behavior. To pursuit this goal, the
IViHumans platform is composed of two separate layers,
one for graphical processing and one for the artificial intel-
ligence computation. This paper describes some relevant
aspects of the experience of developing the IViHumans
platform, with a greater focus on the graphical processing
layer. We concentrate our description in virtual humans
and their abilities to move and to express emotion.
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1 Introduction

The concept of virtual environments populated
by Virtual Humans (VHs) has a wide range of
practical applications. The IViHumans (Intelli-
gent Virtual Humans) platform [1] is the ongo-
ing realization of a research project that aims at
building a flexible platform that elaborates and
renders scenes with VHs that express emotions.

Believable VHs need to combine a realistic
appearance with a virtual brain that is able to ap-
proximate human cognition and behavior. The
IViHumans platform is therefore composed of
two separate layers, one for Graphical Process-
ing (GP) and one for the Artificial Intelligence
(AI). A special concern is the interconnection
between these two layers because they must be
able to control the VHs at different detail lev-
els. Support for relevant aspects such as sensory
honesty, as in [2], or attention focusing for ef-
fective planning [3], must be distributed among
the two layers, maintaining a clear separation of
concerns and responsibilities.
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Presently, we have achieved a stable state of
development over three main issues: percep-
tion, movement and emotion expression. A VH
is able to perceive the surrounding environment
through the single means, for the time being, of
synthetic vision [4]. The motion of the VHs is
supported by Craig Reynolds’ notion of Steer-
ing Behaviour, as well as by his hierarchical cat-
egorization of movement in locomotion, steer-
ing and action selection layers [5, 6]. This last
and topmost layer accommodates the essential
inner workings of the artificial intelligence and
is deeply dependent on several concepts. One of
them is emotion, which greatly affects the be-
havior of real humans. Simultaneously, emotion
must be accompanied by the physical expres-
sion that it naturally entails, which may com-
prise changes in body and facial postures. Until
now, we have centered our efforts on the graph-
ical aspects of the IViHumans platform. The Al
layer — and so, any action selection layer — is yet
to be developed.

In section 3 of this paper we describe the
global architecture of the IViHumans platform;
in section 4 we briefly explain the solution for
movement and emotional expression; section 5
presents the conclusions and future work. The
next section summarizes part of the research
work that created the scientific context that in-
spires the project [IViHumans.

2 Related Work

The area of virtual humans and virtual environ-
ments incited much research in the last couple
of decades, giving rise to diverse contributions.
Some look into the subject in a broad way but
most reveal a tendency of specialization, focus-



ing deeply and incisively on specific topics.

Ulicny and Thalmann present a crowd simula-
tion system in which each individual is an inde-
pendent VH [7]. The system is composed by two
clearly separate layers called Model Layer and
Visualization Layer. The former deals with all
the logic processing whilst the latter is only re-
sponsible for the presentation. The system pre-
sented in [8] — JGOMAS - is also divided in
two modules with analogous duties. Presently it
implements a particular simulator for a capture-
the-flag type of game. Although several in-
stances of the visualization module can be “at-
tached” to a single MAS — which is independent
from them — they do not have any influence over
the state of the world, which means that the user
can’t change the progress of the game.

Torres et. al. use the BDI model to con-
trol animated characters in virtual worlds [9].
3D articulated characters are controlled in real-
time by cognitive agents that are clients of the
environment. Agents must be implemented in
AgentSpeak(L) and they run in an interpreter for
this language, each one in a separate process.
The main limitation is that everything an agent
can perceive must be listed a priori in a list of
boolean statements and this imposition highly
restricts the domain of the data over which the
agents can reason. In [10] the authors propose
an architecture for an embodied conversational
agent that has cognitive and emotional capac-
ities employed to interact with the user. It is
graphically represented by a “talking head” that
may assume one of the six facial expressions
pointed out by Paul Ekman.

Perhaps Reynolds’ work is the one that influ-
enced us the most. He introduced the techniques
of behavioral animation in [5] and later explored
and extended them [6]. He proposed a division
of a character’s movement in layers of growing
levels of abstraction: locomotion, steering and
action selection. He then proposed an abstract
interface for the general capabilities that the first
layer comprises and showed how to build be-
haviors that belong to the second layer, on top
of that. His approach has the goal of simulat-
ing the real characters’ movement, despite not
being physically accurate, unlike, for instance,
the models of Tu et. al. [11], intended to more

closely mimic nature’s complex processes.
Vosinakis et. al. built SimHuman [12], a plat-
form for virtual agents with planning capabili-
ties that run in real-time, in an arbitrary virtual
environment. The system contains features as
inverse kinematics, collision handling and ray-
casting based synthetic vision. It has a physics
engine that derives the following state for each
object. Multon et. al. propose a framework for
animating humans in virtual reality [13], capable
of performing real-time motion synchronization,
retargeting and adaptation in interactive envi-
ronments by offering efficient and morphology
independent motion representation. The blend-
ing of postures is achieved by an algorithm that
is driven with priorities and states. Conde et.
al. developed the ALifeE environment [14] that
equips an Autonomous Virtual Agent with var-
ious kinds of perception, used to create internal
cognitive maps that are employed in the action
processes. The agent’s conduct is led by behav-
ioral animation with reinforcement learning.

3 Architecture

The IViHumans platform separates the GP layer
from the Al layer, an approach that is already
found in works such as the JGOMAS system and
the ROE3 architecture [15]. However, our pro-
posal differs from them by having the amount
of responsibility of each layer well balanced.
For instance, in what regards sensory honesty,
the physical limits to what can be perceived
by a character are controlled by the GP layer
while the cognitive restrictions reside on the Al
layer. Also, the GP layer is responsible for
quickly handling low-level aspects, such as col-
lision response, while the Al layer deals with the
more complex cognitive behavior, using sym-
bolic representations. As a side effect, this archi-
tecture also reduces considerably the communi-
cation overhead.

The GP layer is built on top of the render-
ing engine OGRE (www.ogre3d.org) and re-
lies on the rigid body dynamics engine ODE
(www.ode.org). The Multi-Agent system — the
core of the Al layer — is built upon the JADE
(jade.tilab.com) platform. The GP Layer is re-
sponsible for the representation of all the ele-



ments contained in the virtual world and for re-
producing the appropriate animations that carry
the flow of occurrences, consistently enacting
the evolution of the world and its components.
While the GP layer hosts the bodies of the vir-
tual humans, the Al layer manages their minds.
Each virtual human is controlled by one or more
agents that entitle him with intelligent behavior.
The evolution of the world is due to the effects
induced by both layers.

In our architecture the Al layer is divided
in two main components: the interface agents
component and the cognitive agents component.
The interface agents, one for each virtual entity,
manage the communication with the virtual en-
tities, receiving sensory information and send-
ing commands (figure 1). Although these agents
can act as a raw connection between both lay-
ers, they were extended with new features. They
have two functions: to provide a sensing/acting
cycle that further separates the communication
aspects of the control of the VHs from the more
complex, and possibly slower, cognitive aspects;
and to offer a translation/filtering mechanism
between crude data and symbolical representa-
tion. We can split these functions in four main
components: sensor buffering, action buffering,
data transfer/filter and command translation.

Sensor buffering requests sensory informa-
tion from the GP layer at a defined rate, saving it
into a buffer. The various requests from the cog-
nitive agent component for sensor data are ob-
tained from this buffer (the sensor data buffer).
This isolates the sensor particulars (refresh rate
and cycling) from the higher cognitive levels.
Action buffering reads the next command from
a buffer (the command buffer) and sends it to the
GP layer. This feature detaches the agent cogni-
tive level from the physical details, for instance,
the number of commands that the GP layer is
capable of processing in a time slot. Sensory
data translation/filter translates raw sensor in-
formation in symbolic equivalents or more ab-
stract and constrained representations. This is
achieved by splitting the information into clus-
ters of similar data. For instance, a color name
can correspond to an interval of values in the
RGB gamma. Command translation translates
the higher level commands used by the cogni-

tive components of the agent into the lower level
commands used by the GP layer and saves them
in the command buffer. The translation can be
achieved by using predefined schemas for action
decomposition. Another alternative is to incor-
porate a planner that produces in real-time the
desired action sequence.
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Figure 1: Interface Agents Component detailed.

The GP layer, on the other hand, has its
own interfacing component, composed by two
unique objects: one that deals with the routing of
messages to the adequate recipients and another
one that acts as a special receiver for messages
that aren’t directed to any particular entity, being
instead targeted at a global manager, capable of
operating global changes over the environment.

The concrete entities that must be able to
receive orders from the Al layer, such as the
VHs, will do so through an adapter compo-
nent that manages to unravel the meaning of
messages, translating them to the appropriate
method calls.

4 Motion and Emotional Expression

The realism of the 3D models and of their an-
imations plays a significant role on what con-
cerns the believability of virtual characters. On
the other hand, the 3D models that are used on
virtual environments are subject to the restric-
tions of real-time rendering and should not be
defined with an excessive detail, nor depend on
too heavy algorithms.

In a preliminary approach, we created a proto-
typical 3D model for a VH [16]. It is defined as
a polygon mesh that is associated with a skele-
ton. Its materials are only made up of the ap-
plication of colors and transparency to the faces
of the mesh, as well as of the scarce use of color



maps [17]. The model has poses for the six basic
expressions that were identified by Paul Ekman.
It is easy to exhibit meaningful complex expres-
sions that can be achieved by blending elemen-
tary expressions with certain intensities. An of-
fline tool was also created to obtain and record
new expressions from the combination of basic
ones [18]. This way it is easy to create rich li-
braries of facial expressions for each model.

4.1 Steering and Locomotion

To implement steering, we closely follow
Reynolds’ proposals. Because movement
through steering behaviors could be applied to
a myriad of entities, we decided to bring it apart
from the implementation of any particular en-
tity and so we created a class that models any
moving entity as a point mass, as Reynolds did
with his vehicle model. This class is called Mov-
ingCharacter and it is independent of OGRE.

A MovingCharacter is essentially character-
ized by a mass, a position, a velocity and a vec-
tor that specifies the direction he is facing. This
facing vector may be automatically updated so
that it is always tangent to the path. However,
this 1s not mandatory, so that the MovingCharac-
ter can also move in ways that require his local
depth axis not to be collinear with the velocity
vector. The movement of the MovingCharacter
is ruled by steering behaviors that specify forces
he should apply on himself. The movement pro-
duced by these forces is computed according to
the basic laws of classical physics.
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Figure 2: The solution for steering.

Steering behaviors are sometimes criticised
for being hard-wired into the code [19]. In an
attempt to overcome this problem, we separate
the character from the actual behaviors. A Mov-
ingCharacter aggregates instances of Steering-
Behavior, which is the common interface to all

possible steering behaviors (figure 2). Any in-
stance of SteeringBehavior can be plugged in
and out of the MovingCharacter at run-time.

The behaviors Seek and Arrive are directly in-
spired in the corresponding behaviors explained
in [6]. The behavior Walk does the same as one
of the three rules that underlie the flocking be-
havior in [5]: it tries to match the velocity of the
character with a given target velocity. This be-
havior is useful to have the Al control a VH at a
lower level, as well as to have a user directly “pi-
loting” an avatar. We also introduced the behav-
ior FollowPoints which is useful, for instance, to
make the character follow a path plan. Besides
these steering behaviors, many more may be im-
plemented within the current framework.

The VHs are represented internally, on the
graphical side, by the class IViHuman, which
is actually connected to the fundamental ob-
jects that enable its graphical representation in
OGRE. This class inherits all the steering func-
tionality of MovingCharacter and it maps the
abstract movement of its parent class onto ac-
tual graphical movement and animation, that is,
it has to emulate the locomotion layer.

In what regards its position, the IViHuman
is updated by applying a translation to its 3D
model. The translation vector is given by simply
subtracting the last position of the MovingChar-
acter from the updated one. To update the rota-
tion of the VH, the minimum rotation that trans-
forms the last facing vector into the new one is
applied. The old and new facing vector are al-
ways contained in a single plane, unless there is
an angle of 180° between them. In this special
case the rotation is fixed around the local vertical
axis of the VH.

Simultaneously with the raw movement, the
VH has to be animated. The animation is cho-
sen on the basis of speed, according to rules that,
along with several other parameters, are loaded
at runtime. Some of these parameters indicate
the proper ratio between the speed of the Mov-
ingCharacters and the speed of the animations.
The corresponding values are unique for each
animation of each VH. The choice and update
of the animation is the job of another object that
can be plugged in and out at runtime, so that dif-
ferent methods may be applied to achieve dis-



tinct effects. Figure 3(left) shows our prototype
moving as a result of the techniques summarized
here.

Figure 3: Our prototype, steering to reach a target
(left) and showing a sad expression (right).

4.2 Emotional Expression

In the IViHumans platform, the VHs can con-
vey emotions through expressions (figure 3 —
right). Each VH may have any number of basic
expressions that, when blended together, origi-
nate more complex expressions. Although the
conceptual distinction between basic and com-
plex expressions is essential to the design of the
platform (figure 4), their effects are identical.
Hence, the class IViHuman deals uniformly with
basic and complex expressions through a com-
mon interface that is contained in the abstract
class Expression.
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Figure 4: The solution for emotional expression.

The transition between the expressions of a
VH must not allow for sudden changes on his
face. In our implementation, the smooth tran-
sition between expressions relies on different
states that the Expression objects assume (figure
5). An Expression is in the state INACT when it
is not yet associated with any IViHuman. In this
state, it just symbolizes an abstract expression
that has a name and a desired intensity. When
a request for the Expression to become active is
made, it becomes necessarily associated with an

IViHuman and its state is set to ACT. In this state
the expression is being activated, that is, its cur-
rent intensity is gradually increased, a little bit in
every call to the method update, until it reaches
the desired value. At that point, the Expression
sets itself to the state SKIP and remains constant
until it is notified to deactivate, changing to the
state DEACT. The deactivation process is the in-
verse of the activation one and ends when the
intensity becomes zero again. Then, its state be-
comes DONE, until it is explicitly finished with
the method finish, that has the effect of disso-
ciating the Expression from the IViHuman that
owned it and of turning it into INACT state once
again. The Expression can also be deactivated
when its state is ACT and activated when its
state is DEACT or DONE.
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Figure 5: FSM for the activity of an expression.

The class IViHuman has two relations with
the class Expression: the first one for the cur-
rent expression and the second for the expres-
sions that are being deactivated. The first asso-
ciation is established when a call to activate is
made. It ends with a call to deactivate, giving
rise to the second association, which supports
multiple Expressions per IViHuman. The deacti-
vation is enforced by an explicit request from the
outside or by the /ViHuman, when a new Expres-
sion is supplied to be the current one. Each time
step, the IViHuman updates all the Expressions
to which it is related and, when any Expression
reaches the state DONE, the IViHuman will call
the method finish on it.

The way that the state of an Expression is
internally translated into a deformation of the
mesh depends on its ultimate type. Whilst Ba-
sicExpressions can be directly translated into an
effective expression, CompositeExpressions de-
pend on the translation of the basic types that, at
the bottom of the tree, compose them.



To materialize a visible expression, each Ba-
sicExpression relies on a simple animation that
gradually intensifies the corresponding pose.
Besides being a simpler way of manipulating an
expression, wrapping it into an animation en-
capsulates any other deformation. This way, it
is very easy to deal with more complex expres-
sions. There would be no need for any change
in the code, for an expression that was built by
two poses to be displayed. An expression could
also be setup by deforming a skeleton, a lattice
or any kind of auxiliary object whose shape can
be referenced at a keyframe.

5 Conclusions and Future Work

The prevailing opinion in the domain of virtual
environments inhabited by VHs appears to be
that there is still a wide open field for subsequent
research, despite the broadness of the set of ex-
isting contributions. This judgment is primarily
sustained by the fact that current results are still
far from honestly mimicking human behavior in
its interaction with the environment and with its
peers. With the project [ViHumans, we aim at
the development of a platform intended to en-
able easy creation of applications that integrate
VHs, modestly participating on the enrichment
of the field, by combining a growing set of dis-
tinct features.

In this paper we expose features that were so
far included on the IViHumans platform. Our
short-term goals include integrating the capaci-
ties of ODE to simulate rigid bodies dynamics,
specially when it comes to collision handling,
and developing the Al layer and fully integrate
it with the GP layer.
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